INFORM@RISK SMARTPHONE APP

TECHN OLOGIES 1 uu s s s s s s s s s s s s s s s s s s ns s s s se s s s 0 s s s o668 0 s o6 s s a6 s a6 s s s s sananssnnnsnssnnnnnns 2
FRAMEW O RK 7 vttt ettt ettt et ettt e e e e e e s s e et e e s e a e e e ea e a e e e s a e e e eaeeaeeaeraerneeaensensenaannans 2
101 00 1Y 7 N 2
0 LU 2
L Y 2 2
1T =1 O 3
L0 = = TN = 2P 3
FIREBASE CLOUD MESSAGING. . ututtttetttrtrarerererereeeenenrnsnsasssnsnrnstrtrtrerererererereneararnrnernrnes 3
ST RUGCTURE t 2 a s s s s s s s s s s s s s s e s s o 8 s o 88 o8 oo 8 o 8 oo B 8B H 8 B B BB NN BB NN R BN R R R 3
GENERAL GLOBAL CODE IN APP. St tutuiuititititttisetetesisietsseieieestsssssesetesssssrsisisisreneisens 3
TEMPLATE STRUCTURE AND NAVIGATION. 111 tuttttutteteneteeensssenstrsensteenenstssensnsneeneneneneiererens 3
SPECIFIC MODULES — MAPS, SENSORS, REPORTS. .. uttttttrtrtrtrererererererenenensnrnsnsnsnsnerenersrnenens 4
L N 4
L Y 4
1y 17N 0] 2V = 4

TECHN OLOGIES 12 u s s s s s s s s s s s s s s s sns s s s ns s s s s s s s 5 s s s a0 68 a0 s o6 680 s a6 s s a e sananssnnnsnssnnnnnns 6
Y2 N 6
0 1] 2 =L 6
0TS 1 1 6
X T =17 6
ST RUGCTURE f «a it s s s s s s s s s a0 s s o s s o s s o8 s o8 o8 oo o 8o B8 o 8o B o BN BB R R R m R 6

APP OVERVIEW



TECHNOLOGIES

[FRAMEWORK7?

https://framework?.io/

Framework?7 is a HTML/CSS/Javascript based cross-platform app development framework.
It can use any other purely CSS/JS based libraries without any additional effort and
produces webview based hybrid apps.

Framework?7 comes with a wide variety of predefined Ul elements and also handles the
basics of app initialization and routing between different screens. It does not directly
interface with phone hardware in any meaningful way. Hardware connections are
established through a combination of common HTML functionality and via the chosen
underlying webview development framework.

In case of the Inform@Risk app, this framework is Apache Cordova

|CORDOVA
https: rdova. he.or

Apache Cordova handles compilation of the app itself and in-app hardware functionality.
Major necessary hardware functionality includes:

e Camera access for reporting purposes

¢ Location access for reporting purposes

e Opening HTTP links with currently installed default web browser
e Receiving push notifications

The remaining installed plugins are necessary default functionality like keyboard,
vibration, hard drive access for storage of local data, etc...

[JQUERY
https://jquery.com/

Framework?7 actually provides most commonly used JQuery functionality like DOM
manipulation and AJAX requests on its own. JQuery was integrated nonetheless, since
F7’s DOM manipulation is noticeably worse in total provided functionality than JQuery
and during development there were repeated issues with F7’'s own version of POST
requests.

Normal unmodified GET and Post requests were working as expected, but any advanced
manipulation of communication like modifying sent headers led to enough issues to
switch to JQuery, since there are no major downsides to this decision anyway. DOM
access via native F7 methods or JQuery also does not measurably affect performance.

|CHART.JS

https://www.chartjs.org/


https://www.chartjs.org/
https://jquery.com/
https://cordova.apache.org/
https://framework7.io/

Chart.js is used for displaying data gathered by sensors on the detail screen for individual
sensor installations. It was chosen since it is a very lightweight solution and sensor
installation details screens need to render a significant amount of graphs at the same
time. An additional library is also necessary to correctly format timestamps into
displayable annotations on graphs.

IMOMENT.JS
https://momentjs.com/

Although Moment.js is no longer under official active development, Chart.js explicitly
depends on it for display purposes, so it was chosen for general time output formatting
for the app.

|OPENLAYERS
https://openlayers.org/

The app features a wide variety of interactive maps with different kinds of content. Due
to ease of use and developer familiarity, OpenLayers is used in the app for this purpose.

IFIREBASE CLOUD MESSAGING
https://fir . le.com

The Google provided Firebase Cloud Messaging(FCM) service is used to send push
notification to all installed users. It has extensive example coverage in both how to send
and how to receive notifications on clients and supports all common push notification
functionality as expected (deep linking into app, handling received messages both from
outside or inside the app, message priority, etc...)

STRUCTURE

|GENERAL GLOBAL CODE IN APP.JS

The central logic file app.js contains both app initialization and all global code that does
not belong to specific major functionality of the app that is described later on.

App initialization sets the global app state by both retrieving data from permanent
storage during startup and also querying the server for updated data. Global event
handlers are set to handle back button presses on the phone and correct translations are
set according to either user preference and underlying phone language.

TEMPLATE STRUCTURE AND NAVIGATION

Templating structure is very simple in F7; the template with the global container for the
entire application is called index.html and it is the only top-level template in the entire
application.

Main.html contains the initial entry point into the app and serves as navigation hub. The
app is never deeper than 3 levels of sub screens and all lead back to the main screen.


https://firebase.google.com/
https://openlayers.org/
https://momentjs.com/

Navigation is defined purely within routes.js and all templates access these defined
navigation routes via ordinary HTML hyperlinks.

SPECIFIC MODULES - MAPS, SENSORS, REPORTS

Code is bundled according to functionality for some specific purposes and not contained
in the general global function store of app.js:

¢ Reporting
¢ Interactive maps
e Sensor storage and management
e Firebase messaging
FCM and maps will be covered in more detail, since they are non-trivial in complexity.

FCM

Firebase messaging functionality is exclusively bundled in firebase/index.js. It handles
both registration to the messaging channel on the remote server on initial app startup
and contains the event handler on what to do in the app in case a push notification is
received while the app is open (push notifications are not displayed in case the app
happens to be open while the communication is received).

Functionality to send push notifications to individual clients only is not considered due
not being needed at this point and possible data privacy concerns since firebase is a
Google service and individuals communication would necessitate unique device
identifiers.

MAPS
Map display logic is divided into 3 separate files since it is fairly complicated.

The original plan of the app was to mix and match layers on different screens and to
avoid excessive code duplication of layer and display logic, map initialization, layer and
style data were separated into different staic global objects.

The central file map.js deals with map initialization, creating global events like popups
opening and access/manipulation methods of existing rendered map layers.

The layer definition file maplayers.js contains individual openlayers layer object
definitions and various callbacks for retrieving data, filling empty popups with actual
data, select feature events, etc...

The final file mapStyles.js is focused on both openlayers object style definitions for
objects on maps itself and also the styles of popups for individual selected features for
the various layers (markup + CSS). The styling file is truly separate from actual function
code of the corresponding layers, since a lot of the styles for features depend on various
attributes being set for display purposes (e.g. the state of a sensor influences the border
color of its icon on the sensor overview map).

DATA STORAGE

The currently used storage solution for persistent data storage between app startups is
localStorage for all data.



In case localStorage becomes unfeasible as a solution in the future, any kind of
synchronous, global key/value store based on strings can be used with essentially no
effort. The central logic file app.js contains a global setter and getter method to access
localStorage and was designed to be replaced at a later point if necessary.

Complex objects are serialized into JSON before storage and properties define in their
own getters/setters if their data needs to be serialized.



SERVER OVERVIEW

TECHNOLOGIES

ILARAVEL
https://laravel.com/
The core of the app backend is an Apache2 webserver running Laravel, a PHP framework.

Laravel serves both the API for the app itself and the web based administration interface
to manage app content.

IPOSTGRESQL
https://www.postgresql.org/

PostgreSQL is chosen as RDBM backend for the webserver instead of the more common
MySQL/Maria due to better support for geographic data.

IPOSTGIS
https://postgis.net/

Although explicit plugins for geographical data are not necessary in the current use case
of this app since it only need to save and display basic shapes(Points,Lines,Polygons),
PostGIS was still used as a data storage solution in case and advanced geographical
calculations like dynamic routing are ever required.

[ IMAGEMAGICK
https://im magick.org/index.ph

Imagemagick is an image display and manipulation program. It is used during the image
upload process when a user submits a report.

During downsampling for later use, images need to corrected for their rotation using
their EXIF data. PHP plugins take care of this for the vast majority of images, but
Imagemagick exists as a fallback. Smartphones from certain vendors contain EXIF data
that cannot be correctly interpreted by default PHP image manipulation libraries and
Imagemagick takes over in case PHP fails.

STRUCTURE

The structure follows basic Laravel conventions, Laravel itself being a fairly standard
implementation of the MVC concept.

The structure of Laravel projects is summarized in their own official documentation:


https://imagemagick.org/index.php
https://postgis.net/
https://www.postgresql.org/
https://laravel.com/



https://laravel.com/docs/9.x/structure

	App Overview
	Technologies
	Framework7
	Cordova
	JQuery
	Chart.js
	Moment.js
	Openlayers
	Firebase Cloud Messaging

	Structure
	General global code in app.js
	Template structure and navigation
	Specific modules – maps, sensors, reports
	FCM
	Maps
	Data storage


	Server overview
	Technologies
	Laravel
	Postgresql
	Postgis
	imagemagick

	Structure


